N.YE. GALDIN

Table 1 (Continued)

No	Mineral and formula	ρ, g/cm ³	M, g/mole	$\nu = \frac{M}{\rho},$ cm ³ //mole	$\overline{M} = \frac{M}{n}$,	$\overline{\nu} = \frac{M}{\rho n},$ cm ³	°0. (Å) ³	$l = \frac{1}{v_0}$	ь	K•10-*, kg/cm ³	$\Phi = \frac{K}{\rho},$ (km///sec) ²	$d_1 = 0.1$ $b_{\omega l.}$ (A) -3	X
36	Pyrope												
37	Mg ₃ Al ₂ Si ₃ O ₁₂	3.58	403.19	112.5	20.1	5.62	11.5	8.7	4.2	~1 ,	46	111	0.91
38	Fe ₃ Al ₂ Si ₃ O ₁₂ Spessartine	4.32	497.78	115.2	24.88	5.76	11.80	8.5	4.2	~16	37	107	0.88
39	Mn ₃ Al ₂ Si ₃ O ₁₂	4.19	495.02	118.0	24.75	5.9	12.1	8.2	4.1	~15.5	37	102	0.86
00	Ca ₃ Al ₂ Si ₃ O ₁₂	3.59	450.47	126.3	22.70	6.3	12.8	7.8	3.8	~15	42	90	0.81
40	Ca ₃ Fe ₂ Si ₃ O ₁₂	3.86	508.21	131.67	25.4	6.6	13.5	7.4	3.6	~15	39	81	0.77
41	Kyanite Al ₂ SiO ₅	3.66	162.05	44.1	20.2	5.52	10.8	9.3	4.1	19*	52*	125	0.97
42	Sillimanite Al ₂ SiO ₅	3.24	162.05	49.91	20.2	6.23	12.2	8.2	3.6	13*	40*	97	0.85
43	Andalusite Al ₂ SiO ₅	3.14	162.05	51.54	20.2	6.43	12.6	7.9	3.5	11*	35*	91	0.82
44	Staurolite Fe(OH), ·Al ₂ SiO ₈	3.65	413.8	114	21.8	6.0	-	-	_	12.8	34	_	0.52
45	Cordierite Mg ₂ Al ₃ [AlSi ₅ O ₁₈]	2.51	585	232.8	20.17	8.0	15.9	6.3	2.8	-	-	-	0.65
46	Enstatite												
47	MgSiO ₃	3.20	100.41	32.50	20.0	6.5	12.9	7.8	3.8	11	34	89	0.79
48	MgSiO ₃	4.0*	100.41	25.0	20.0	5,0	10.0*	10	4.9*	32*	80*	147	1.02
40	FeSiO ₃	3.99	131.94	33.07	26.4	6.6	13.5	7.4	3.7	10*	25*	82	0.77
49	FeSiO ₃	5.10*	131.94	25,85	26.4	5.3	10.8*	9.3	4.6*	29.7*	58*	128	0.99
50	Mg, Fe)SiO ₃	3.5	116.0	33.0	34	6.8	13.2	7.6	3.7	9.6	28	84	0.77
51	CaMgSi ₂ O ₆	3.26	216.58	66.4	21.66	6.64	13.5	7.4	3.6	12	37	80	0.77
52	Jadeite NaAlSi ₂ O ₆	3.33	202.15	60.98	20.2	6.1	12.5	8.0	4.0	13.5	41	96	0.83
53	Hornblende							*					
	$\begin{array}{c} Ca_2(Mg,Fe)_{\mathfrak{b}}\times\\ [Si_4O_{11}]_2(OH)_2\end{array}$	3.15	820	260	20.3	6.8	-	-	-	9.5	30	-	0.78
54	Orthoclase	2 56	278 35	109	21 40	8.4	16.7	6.0	27	5.2	21.8	53	0.63
55	Albite	2.00	262.2	100 2	20.2	7 79	15.5	6.6	3.0	5.7	21.8	62	0.68
56	Anorthite CaAl-Si-O-	2.76	278.2	100.2	21.4	7.72	15.5	6.4	3.0	8.7	31.5	62	0.68
	Carri201208								5.5				

**n was deduced by an additivity calculation.

EFFECTS OF OXYGEN PACKING DENSITY ON PHYSICAL AND THERMODYNAMIC PARAMETERS

Figure 1 shows the bulk modulus K as a function of v_0 . The oxides and silicates form

two independent groups as parallel lines, the oxides having the higher K for a given v_0 . Quartz has a somewhat special position, since its K is too low for an oxide which is related to the lower K for silicates. There is no exact relation of K to ρ for oxides. For

	L		_	_	-	· .			
(A			31		x				
- mart	2	47.	9		0.59				
	1	141			1,02				
		78 67	.3		0.75				
1		35	.2		0.51				
251		55 82 73 40	.7		0.64 0.77 0.73 0.54				
5		111 85 200 141			0. 0. 1. 1.	59 79 21 01			
-	T	86			0.8				
7		76 91		1					
			100	0.8	0				
	-	100	T	00	0.8	5			
	k	94		0.83					
		78 80		0.76					
	1	33		0	.9	9			
			0.85						
•	1	-	0.94						
	90			0.81					
ļ	10	08		0.90					
	111	79 72	0.78 0.73						
L	5	59	0.66						
114 103 77			000).	91 87 76				

C

1